‘The race to create “insect cyborgs”‘

Posted on February 17, 2013

0


Today (17th February), an item was posted on guardian.co.uk titled ‘The race to create “insect cyborgs”‘, which is an excerpt from new book ‘Frankenstein’s cat’ by Emily Anthes about horrific biotechnology.

‘… Why make tiny flying drones when you can fly real insects by remote-control? It could lead to a neuroscience revolution –

In 2006 the US Defense Advanced Research Projects Agency (Darpa) asked America’s scientists to submit “innovative proposals to develop technology to create insect-cyborgs” .

It was not your everyday government request, but it was an utterly serious one. For years, the US military has been hoping to develop “micro air vehicles” – ultra-small flying robots capable of performing surveillance in dangerous territory. Building these machines is not easy. The dynamics of flight change at very small sizes, and the vehicles need to be lightweight enough to fly, yet strong enough to carry cameras and other equipment. Most formidably, they need a source of power, and batteries light enough for microfliers just don’t have enough juice to keep the crafts aloft for very long. Consider the tiny, completely synthetic drones that engineers have managed to create: the DelFly Micro, which measures less than 10cm from wingtip to wingtip, can stay airborne for just three minutes.

Darpa officials knew there had to be something better out there. “Proof of existence of small-scale flying machines… is abundant in nature in the form of insects,” Amit Lal, a Darpa programme manager and Cornell engineer, wrote in a pamphlet the agency issued to the prospective researchers.

Perhaps, Darpa officials realised, the military didn’t need to start from scratch; if they began with live insects, they’d already be halfway to their dream flying machines. All they’d have to do was figure out how to hack into insects’ bodies and control their movements.

Darpa’s call essentially launched a grand science fair, one designed to encourage innovation and tap into the competitive spirit of scientists around the country. The pamphlet outlined one specific application for the robo-bugs –outfitted with chemical sensors, they could be used to detect traces of explosives in remote buildings or caves – and it’s easy to imagine other possible tasks for such cyborgs. Insect drones kitted out with video cameras could reveal whether a building is occupied and whether those inside are civilians or enemy combatants, while those with microphones could record sensitive conversations, becoming bugs that literally bugged you.

Darpa’s call for insect cyborgs piqued the interest of Michel Maharbiz, an electrical engineer at the University of California, Berkeley. He figured that most scientists taking on Darpa’s challenge would work with flies or moths, longtime laboratory superstars, but Maharbiz came to believe that beetles were a better bet. Compared with flies and moths, beetles are sturdy animals, encased in hard shells, and many species are large enough to carry significant cargo. The downside: scientists didn’t know much about the specific nerve pathways and brain circuits involved in beetle flight.

That meant that the first challenge was to unravel the insects’ biology. Maharbiz and his team began working with several different beetle species and eventually settled on Mecynorrhina torquata, or the flower beetle. It is a scary-looking bug – more than 5cm long, with fearsome claws and a rhinoceros-like horn on the forehead in males. The flower beetle’s transformation began with a quick trip to the freezer. In the icy air, the beetle’s body temperature dropped, anaesthetising the insect. Then Maharbiz and his students removed the bug from the icebox and they poked a needle through the exoskeleton, making small holes directly over the brain and the base of the optic lobes, and threaded a thin steel wire into each hole. They made another set of holes over the basalar muscles, which modulate wing thrust and are located on either side of the beetle’s body. The researchers pushed a wire into the right basalar muscle.

Stimulating it would cause the beetle’s right wing to start beating with more power, making the insect veer left. They put another wire into the left basalar muscle; they would use it to steer the beetle to the right. The loose ends of all these wires snaked out of their respective holes and plugged into a package of electronics mounted with beeswax on the beetle’s back. This “backpack” included all the equipment Maharbiz needed to wirelessly send signals to the beetle’s brain: a miniature radio receiver, a custom-built circuit board and a battery.

Then they put all the pieces together. One of Maharbiz’s students called up their custom-designed “Beetle Commander” software on a laptop. He issued the signal. The insect’s wings began to flap. The empty white room the researchers used as an airfield filled with a buzzing sound, and the bug took flight. The beetle flew on its own – it didn’t need any further direction from human operators to stay airborne – but as it cruised across the room, the researchers overlaid their own commands. They pinged the basalar muscles, prompting the beetle to weave back and forth through the room, as if flying through an invisible maze.

As soon as Maharbiz presented his work, the news stories came fast and furious, Wired pronounced: “The creation of a cyborg insect army has just taken a step closer to reality” and the Daily Mail panicked: “Spies may soon be bugging conversations using actual insects, thanks to research funded by the US military“. A columnist speculated about the possibility of a swarm of locust drones being used as vehicles for launching deadly germs.

Maharbiz bristles at the most sinister suggestions, at the media coverage that suggests his beetles are the product of, as he puts it, “some evil government conspiracy”. His beetles haven’t been sent out into the field yet – they still need some refinement before they’re ready for deployment – but if and when they are, Maharbiz says he expects his bugs to be used abroad, in routine military operations, but not to track US citizens. (Of course, some people may find that “equally reprehensible”, he acknowledges.) There are civilian applications, too. Imagine, Maharbiz tells me, an army of beetlebots, steered to the scene of an earthquake. The bugs could be outfitted with temperature sensors, guided through rubble and programmed to send messages back to search teams if they detect any objects that are close to human body temperature; rescuers would then know exactly where to search for survivors. Whatever the application, future insect commanders will have options that go beyond beetles. Maharbiz is working on a remote-controlled fly, which he anticipates being especially difficult to build. “The fly is so small and the muscles are so packed and everything’s so tiny,” he says.

Insects could give us a cyborg-animal air force, zooming around the skies and searching for signs of danger. But for terrestrial missions, for our cyborg-animal army, we’d have to look elsewhere. We’d have to look to a laboratory at the State University of New York (SUNY) Downstate, where researchers have built a remote-controlled rat …

Gage and Marzullo attract controversy because they are taking biotechnology out of the lab and putting it into the hands of the public. And they are criticised for meddling with animal bodies for “trivial” purposes. Most people, Marzullo explains, have accepted the use of animals for scientific research, military defence or food. “But if you exploit animals for education,” he says, “people aren’t cool with that.” Is educating students about the nervous system – and potentially encouraging a new generation of neuroscientists – a less-justifiable use of animals than hunting out mines or earthquake survivors? It’s time to start thinking through these issues, because now that the tools of brain control have been liberated from the lab, there’s no telling how they’ll be used.

Indeed, there is a growing community of “biohackers”, science enthusiasts who are experimenting with genes, brains and bodies outside the confines of traditional laboratories, working on shoestring budgets in their garages and attics, or joining the community labs that are springing up around the globe. Some of these resourceful do-it-yourselfers are even building their own versions of high-tech laboratory equipment that normally costs thousands of dollars.

Backyard Brains is tapping into this movement, giving amateurs access to some of science’s most sophisticated tools and techniques. The latest, greatest cyborg critters may come not from state-of-the-art labs, but the minds of curious kids and individual hobbyists. Though scientists will continue to build their cyborg animals, Maharbiz says he fully expects that “kids will be able to hack these things, like they wrote code in the Commodore 64 days”. We are heading towards a world in which anyone with a little time, money and imagination can commandeer an animal’s brain. That’s as good a reason as any to start thinking about where we’d draw our ethical lines. The animal cyborgs are here, and we’ll each have to decide whether we want a turn at the controls …’

Read the item in full, view image and video, and add your comment online at www.guardian.co.uk/science/2013/feb/17/race-to-create-insect-cyborgs

[Vegans say abandon the exploitation, abuse and slaughter of all animals, including insects, and abandon the production and consumption of all animal products and services.]

.

Advertisements
Posted in: News